

MICE Goals and Optics Options

C. T. Rogers, ASTeC Intense Beams Group Rutherford Appleton Laboratory

Introduction

- Review of principles of ionisation cooling
 - MICE as a test of ionisation cooling principles
 - Physics goals of MICE at Step IV
 - Physics goals of MICE for the Demonstration of Ionisation Cooling
- Step IV Programme in the absence of M1 in SSD
- Options for the Demonstration of Ionisation Cooling

Ionisation Cooling

- Cooling achieved by ionisation energy loss
 - Absorber removes momentum in all directions
 - RF cavity replaces momentum only in longitudinal direction
 - End up with beam that is less divergent
- Stochastic effects limit cooling
 - Multiple Coulomb Scattering increases transverse emittance
- Tight focus reduces relative effect of scattering
- Low Z material causes less scattering
 - E.g. lithium hydride or liquid hydrogen
- Equilibrium emittance where the two effects balance

Cooling Equation

One can write the change in emittance as a function of z:

$$\frac{d\epsilon_n}{dz} \approx \frac{1}{E} \left\langle \frac{dE}{dz} \right\rangle \epsilon_n + \frac{1}{2m} \frac{13.6^2}{L_R} \frac{\beta_{\perp}}{\beta_{rel}^3 E}$$

There exists an equilbrium emittance where the heating and cooling terms balance:

$$\epsilon_n(equilibrium) = \frac{1}{2m} \frac{13.6^2}{L_R} \frac{\beta_{\perp}}{\beta_{rel} < \frac{dE}{dz} > 0}$$

- MICE seeks to measure
 - The material physics parameters that make up the cooling effect
 - The change in emittance as a function of momentum and β_{\perp}
 - For a range of lattice scenarious
 - Reacceleration and sustainable cooling

The MICE Steps

MICE Step IV

Variable thickness Primary 7th February 2015 high-Z diffuser 201 MHz lithium-hydride 201 MHz absorber cavity cavity Upstream Downstream spectrometer module spectrometer module Electron Muon Ranger (EMR) Secondary ' Secondary ToF 1 lithium-hydride lithium-hydride Pre-shower absorber absorber (KL) Focus-coil Focus-coil module module ToF 2 Scintillating-fibre Scintillating-fibre tracker tracker

MICE Demonstration of Ionisation Cooling

MICE Physics Goals

- MICE physics goals at Step IV demonstrate material physics properties
 - Measurement of multiple Coulomb scattering
 - Measurement of energy loss
 - Measurement of transverse normalised emittance reduction
- MICE physics goals for Cooling Demo demonstrate sustainable ionisation cooling
 - Show transverse emittance reduction in absorbers
 - Show energy replenishment in the RF cavities

Step IV

Measurement of scattering

- Field-off route
 - Measure tracks upstream of absorber
 - Measure tracks downstream of absorber
 - Select momentum bite using TOF12
 - Study the transverse kick
- Field-on route
 - Extrapolate tracks upstream to the absorber through the fields
 - Extrapolate tracks downstream to the absorber through the fields
 - Select momentum bite using tracker pz reconstruction
- Seek to improve on measurements made in MuScat
 - Systematics limited at ~ 10-100k events
 - Field-off data gets around 10k through-going muons per hour
 - Magnets can be set to improve on rate even without M1 in SSD
- Detector resolutions are comparable to MuScat
 - Field-off transverse resolution is better than field-on data
 - Field-off pz resolution is worse than field-on data (pz selection)

Measurement of energy loss

- No prior measurement of muon energy loss in liquid Hydrogen or Lithium Hydride in the MICE energy regime
- Measurement of mean energy loss is expected to confirm Bethe-Bloch formula
 - Hope to measure minimum ionising energy in Lithium Hydride
 - Hope to measure energy straggling
 - Tracker pz resolution is similar width to the energy straggling distribution
- Require a lattice with reasonable through put and SSU/SSD at 4 T
 - This is possible even without M1/SSD operational

Measurement of Emittance Reduction

- We have lattices without M1 in SSD for 140 MeV/c and 200 MeV/c that demonstrate cooling
 - 3 T field in the trackers
 - Some mismatch in TKD
- We are preparing a lattice at 240 MeV/c
 - This is harder, but expect that it is possible

Tracker resolution

- Momentum resolution of the tracker is okay at 3 T
 - P_z resolution dramatically worse at < 1-2 T
- Possible to use TOF and EMR to get p_z
 - Requires software development

Run plan

- Plan is to make a cross shape in parameter space
 - 5 emittances + 5 beta + 5 momenta = 15 settings
 - Pending optics without M1 in SSD
 - Run with antisymmetric fields "flipped"
 - Run with symmetric fields "solenoid"
 - Reduced solenoid mode for IH₂
 - No momentum scan or emittance scan in solenoid mode
 - This is done in flip mode
- Enables better understanding of the trends (more points)
- Extrapolate to get to parameter space corners
 - Material physics is only "new physics", and this will be well studied in a number of configurations
 - Optics is specific to MICE Step IV, i.e. we seek to demonstrate understanding

Step IV - Conclusions

- M1 coil on SSD is **not** required for successful operation of Step IV
 - We have lattices that can give "direct" measurement for all Step IV momenta
 - We have lattices that function at 140 MeV/c and 200 MeV/c
 - We have not yet designed lattices for a β_{\perp} scan, but expect that this is possible
- ECE coils on SSD are required to operate at > 2 T for tracker reconstruction in pz
 - Required for energy loss measurement
 - Required for emittance reduction measurement

Demonstration of Ionisation Cooling

Demonstration of Ionisation Cooling

- MICE "Demonstration of Ionisation Cooling"
 - Redesign of MICE Step VI given lessons learnt during Step IV construction
 - Includes a full cooling half-cell
 - Includes RF cavities
- Shows emittance reduction including reacceleration

Demonstration of Ionisation Cooling

- Two Focus coil modules
- Lithium hydride absorber and two secondary absorbers
- Two RF cavities

Performance

- Equilibrium emittance around 3 mm to be measured
- Acceptance around 10 mm to be measured

"Do Nothing" Option

- Marginal reduction of RMS emittance
- Mitigate by extrapolating tracks upstream of SSD/M1
 - Introduce systematic error from knowledge of field
- Mitigate by more sophisticated phase space volume analysis
 - May be challenging due to high curvature of phase space
- Mitigations are not possible in context of 1.2 T field in SSD
- Mitigations incur unacceptable risk due to suspected damage to SSD feedthrough

"Additional Coil" option

- Introduce an additional Focus coil pair to aid matching
 - Minimum space between FCD and additional Focus coil
 - Minimum space between additional Focus coil and SSD
- To attain flat β_⊥ in SSD
 - Reduced B₇ in SSD to 2 T
 - Large β_⊥ excursion in additional Focus coil

"Additional Coil" option

- Emittance reduction readily measurable
 - Note that B_z was degraded to achieve this performance
- Leaves risk due to suspected damage to SSD feedthrough

Conclusions

Conclusions

- M1 coil on SSD is not required for successful operation of Step IV
- Baseline for MICE demonstration of ionisation cooling will
 - Show transverse emittance reduction in absorbers
 - Show energy replenishment in the RF cavities
- Three options were shown in the light of the failure of M1/SSD
- Baseline lattice with repaired SSD
- Baseline lattice without repaired SSD
 - Requires challenging analysis to make it work
 - Leaves risk due to suspected damage to SSD feedthrough
- Baseline lattice with additional FC for matching
 - Does require some reduction in SSD field, hindering reconstruction
 - Leaves risk due to suspected damage to SSD feedthrough